Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Investig Dermatol Symp Proc ; 16(1): S67-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24326566

RESUMO

Cutaneous delivery of therapeutics represents a proven and attractive option for treating a variety of dermatologic conditions with minimal systemic side effects. Although there have been many innovations in drug delivery systems, the number of effective cutaneous drugs remains small, primarily because of the stratum corneum permeability barrier. Overcoming this barrier safely and reversibly to deliver large hydrophilic drugs cutaneously is one of the major challenges in the field of dermatologic therapy.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos , Absorção Cutânea , Folículo Piloso/fisiologia , Humanos , Transcitose
2.
PLoS Genet ; 8(5): e1002688, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570637

RESUMO

Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP-seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)-a general mechanism which may confer tissue-specific gene expression in multiple lineages.


Assuntos
Cor de Cabelo , Melanócitos , Fator de Transcrição Associado à Microftalmia/metabolismo , Pigmentação , Síndrome de Waardenburg , Fator de Transcrição YY1/genética , Animais , Linhagem da Célula , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Cor de Cabelo/genética , Humanos , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/genética , Pigmentação/genética , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/metabolismo , Fator de Transcrição YY1/metabolismo
3.
BMC Infect Dis ; 6: 13, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16436203

RESUMO

BACKGROUND: The reproducibilty of dengue IgM and IgG ELISA was studied in serum and filter paper blood spots from Vietnamese febrile patients. METHODS: 781 pairs of acute (t0) and convalescent sera, obtained after three weeks (t3) and 161 corresponding pairs of filter paper blood spots were tested with ELISA for dengue IgG and IgM. 74 serum pairs were tested again in another laboratory with similar methods, after a mean of 252 days. RESULTS: Cases were classified as no dengue (10 %), past dengue (55%) acute primary (7%) or secondary (28%) dengue. Significant differences between the two laboratories' results were found leading to different diagnostic classification (kappa 0.46, p < 0.001). Filter paper results correlated poorly to serum values, being more variable and lower with a mean (95% CI) difference of 0.82 (0.36 to 1.28) for IgMt3, 0.94 (0.51 to 1.37) for IgGt0 and 0.26 (-0.20 to 0.71) for IgGt3. This also led to differences in diagnostic classification (kappa value 0.44, p < 0.001) The duration of storage of frozen serum and dried filter papers, sealed in nylon bags in an air-conditioned room, had no significant effect on the ELISA results. CONCLUSION: Dengue virus IgG antibodies in serum and filter papers was not affected by duration of storage, but was subject to inter-laboratory variability. Dengue virus IgM antibodies measured in serum reconstituted from blood spots on filter papers were lower than in serum, in particular in the acute phase of disease. Therefore this method limits its value for diagnostic confirmation of individual patients with dengue virus infections. However the detection of dengue virus IgG antibodies eluted from filter paper can be used for sero-prevalence cross sectional studies.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/diagnóstico , Dengue/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Ensaio de Imunoadsorção Enzimática/instrumentação , Humanos , Filtros Microporos , Papel , Reprodutibilidade dos Testes , Vietnã
4.
J Biomed Mater Res B Appl Biomater ; 72(2): 292-8, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15486967

RESUMO

Hyaluronic acid (HA) has a number of potential biomedical applications in drug delivery and tissue engineering. For these applications, a prerequisite is to understand the characteristic of HA films directly immobilized to solid substrates. Here, we demonstrate that high molecular weight HA can be directly immobilized onto hydrophilic substrates without any chemical manipulation, allowing for the formation of an ultrathin chemisorbed layer. Hyaluronic acid is stabilized on these surfaces through hydrogen bonding between the hydrophilic moieties in HA [such as carboxylic acid (-COOH) or hydroxyl (-OH) groups] with silanol (-SiOH), carboxylic acid or hydroxyl groups on the hydrophilic substrates. Despite the water solubility, the chemisorbed HA layer remained stable on glass or silicon oxide substrates for at least 7 days in phosphate-buffered saline. Furthermore, HA immobilized on silicon and other dioxide surfaces in much higher quantities than other polysaccharides including dextran sulfate, heparin, heparin sulfate, chondroitin sulfate, dermatan sulfate, and alginic acid. This behavior is related to the molecular entanglement and intrinsic stiffness of HA as a result of strong internal and external hydrogen bonding as well as high molecular weight. These results demonstrate that HA can be used to coat surfaces through direct immobilization.


Assuntos
Materiais Biocompatíveis/química , Ácido Hialurônico/química , Teste de Materiais , Absorção , Estabilidade de Medicamentos , Ligação de Hidrogênio , Eletricidade Estática , Propriedades de Superfície
5.
Cancer Res ; 64(21): 7668-72, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15520166

RESUMO

Nucleic acid ligands (aptamers) are potentially well suited for the therapeutic targeting of drug encapsulated controlled release polymer particles in a cell- or tissue-specific manner. We synthesized a bioconjugate composed of controlled release polymer nanoparticles and aptamers and examined its efficacy for targeted delivery to prostate cancer cells. Specifically, we synthesized poly(lactic acid)-block-polyethylene glycol (PEG) copolymer with a terminal carboxylic acid functional group (PLA-PEG-COOH), and encapsulated rhodamine-labeled dextran (as a model drug) within PLA-PEG-COOH nanoparticles. These nanoparticles have the following desirable characteristics: (a) negative surface charge (-50 +/- 3 mV, mean +/- SD, n = 3), which may minimize nonspecific interaction with the negatively charged nucleic acid aptamers; (b) carboxylic acid groups on the particle surface for potential modification and covalent conjugation to amine-modified aptamers; and (c) presence of PEG on particle surface, which enhances circulating half-life while contributing to decreased uptake in nontargeted cells. Next, we generated nanoparticle-aptamer bioconjugates with RNA aptamers that bind to the prostate-specific membrane antigen, a well-known prostate cancer tumor marker that is overexpressed on prostate acinar epithelial cells. We demonstrated that these bioconjugates can efficiently target and get taken up by the prostate LNCaP epithelial cells, which express the prostate-specific membrane antigen protein (77-fold increase in binding versus control, n = 150 cells per group). In contrast to LNCaP cells, the uptake of these particles is not enhanced in cells that do not express the prostate-specific membrane antigen protein. To our knowledge, this represents the first report of targeted drug delivery with nanoparticle-aptamer bioconjugates.


Assuntos
Antígenos de Superfície/metabolismo , Sistemas de Liberação de Medicamentos , Glutamato Carboxipeptidase II/metabolismo , Oligonucleotídeos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Ácido Láctico/administração & dosagem , Masculino , Poliésteres , Polietilenoglicóis/administração & dosagem , Polímeros/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...